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Abstract— Greedy algorithms are appealing not only because
of their simplicity but also because of their effectiveness. In this
paper, we study the possible greedy solutions for the optical
switch scheduling problem. In particular, our algorithm 2-
AUGMENTATION combines the idea of simple greedy algorithm
[7] and augmenting paths in maximal matching algorithms [9].
Our analysis and simulation shows that it yields satisfactory
performance after comparing with the simple greedy algorithm.
By generalizing this approach, we exploit the possibility of a class
of greedy algorithms based on the maximal weighted matching
heuristic.

I. INTRODUCTION

Researches on optical fabrics inside switches and routers
have received an increasing number of interests over the
past few years. It is because they provide more scalability,
higher bit rate, and lower power consumption than their
electronic counterparts. Current technologies for optical fabric
include optical micro-electro-mechanical systems (MEMS),
liquid crystal, bubble switches, thermo-optic, etc [1].

On the contrary of the advantages on the economic basis,
optical switches suffer certain technical constraints. For one
thing, the time required for establishing a connection between
input-output ports in optical switches (or reconfiguration de-
lay) takes hundreds of nanoseconds to a few milliseconds
[1]. This delay possibly includes the time for mechanical
settling, synchronization, etc. In other words, on a system with
slotted time equals to 50 ns (64 bytes at 10 Gb/s), it takes
around 10 to 105 time slots to reconfigurate the optical fabric.
Therefore, traditional slot-by-slot scheduling is no longer a
feasible approach. Because even when reconfiguration takes
only one time slot, at least half of the bandwidth is wasted
on setting up the fabric in between each transmission. The
efficiency of such an optical switch is then at most 50%.

In order to promote the switching efficiency, one has to
reduce the scheduling rate such that each schedule holds for
several time slots. This scheduling problem is called Time Slot
Assignment (TSA) problem and first studied in the context of
Satellite Switched Time Division Multiple Access (SS/TDMA)
systems. The goal is to minimize the switching cost, which is
the time spent on the makespan of transmitting a batch of
packets and on reconfiguring optical fabrics. Several schedul-
ing algorithms have been proposed [2]–[7] toward efficient
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solutions. It has also been proven to be NP-hard by Gopal and
Wong [3] for the case when the number of the packets in each
batch are small, and by Li and Hamdi [5] for the more general
case. Therefore, we shall find good approximation algorithms
that minimize the switching cost.

Among those approaches proposed, greedy algorithms are
appealing not only because of their simplicity but also because
of their effectiveness. In general, there are two sorts of greedy
heuristics we could apply to this problem.

1) To transmit requests of similar magnitude in a configu-
ration;

2) to transmit requests that contain as much magnitude as
possible in a configuration.

The greedy algorithm (or GREEDY for short) introduced
in [7] and K-Transponders introduced in [3] applied the
first heuristic. In particular, study in [7] has shown that the
simple greedy algorithm is a 2-approximation algorithm with
a reasonable time complexity.

In this paper, we introduce a greedy approach of the
second heuristic. This Greedy Maximal Weighted Scheduling
(GMWS) approach actually consists of a class of algorithms
parameterized on the number of edges augmented in each
step. After formally formulate the TSA problem in Section
II, we will first introduce a representative of the GMWS
algorithms, named 2-AUGMENTATION, in Section III. As the
name suggests, in each step the 2-AUGMENTATION algorithm
augments the magnitude of two requests that are greedily
picked from the pre-sorted request list.

The performance of 2-AUGMENTATION will be analyzed in
Section IV. The time complexity of the 2-AUGMENTATION

algorithm is O(N2 log N) and it produces at most 2N − 1
configurations, given an N ×N optical switch. By simulation,
we show that 2-AUGMENTATION performs slightly better than
GREEDY in terms of the scheduling makespan and also the
number of configurations it incurs, on uniformly random input
traffics.

In Section V, we introduce a class of greedy algorithms that
generalize 2-AUGMENTATION, in which we augment more
than two requests at a time. The extreme of this generaliza-
tion is actually the Maximum Weighted Matching (MWM)
algorithm, if we treat the scheduling problem as searching for
matchings on a bipartite graph. However, augmenting paths
for MWM is very costly in terms of running time (O(N3) for
each maximum matching [8]). That is also why we shall reveal
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in our further discussion that augmenting many requests at the
same time may not be practical since it is time-consuming.

Finally, we conclude this paper in Section VI with remarks
and open questions.

II. PRELIMINARIES

In this section we formally describe the optical switching
model and its scheduling problem. We consider an N × N
input-queued switch with Virtual Output Queuing (VOQ) for
storing fixed size packets, and an optical fabric for switching
packets (shown in Fig. 1). Take the popular two-dimensional

Fig. 1. A router structure with virtual output queuing.

(2D) MEMS as an example of the optical fabrics. The basic
switching elements are tiny mirrors with binary ON/OFF posi-
tions, which are arranged in crossbar configuration. Switching
is done by reflection of light. In general, if the (i, j) mirror is
raised up (i.e., ON position), it directs light from the ith input
fiber to the jth output fiber. In this model, packets arrive at
input ports and will be temporarily stored in a queue associated
to the given output port. Time is slotted and we assume traffic
is admissible, so that there is at most one fixed-size packet
received from any input port or dispatched to any output
port in one time slot. In batch scheduling, packets are first
accumulated for T time slots, where T , or the batch length, is
a predefined system parameter. We then obtain a traffic matrix
(i.e., batch)

D = [di,j ]N×N di,j ≥ 0,

in which any row sum and column sum should not exceed the
accumulated port capacity under admissible traffic. That is,

∑

i

di,j ≤ T and
∑

j

di,j ≤ T, (T > N).

A centralized scheduler is responsible to find matchings, i.e.,
switching configurations, between the inputs and outputs. Then
the fabric is configured according to the matchings in order to
deliver packets from the inputs to the outputs. Each time the
switch starts up a new switching configuration, it introduces
a reconfiguration overhead δ for arranging and synchronizing
the mirrors. The objective of the scheduler is to minimize the
scheduling cost, which is the sum of the scheduling makespan
and the total overhead.

In TSA setting, we reduce the rate of finding matchings and
pipeline the switching tasks. Instead of finding a matching for
every time slot, we accumulate packets for T time slots (in
the accumulating phase). Then the optical fabric is configured
according to the computed matching scheme (in the scheduling
phase). Finally, it holds for another T time slots to switch
the packets to the output ports (in the transmitting phase). In
such a manner, pipelining is allowed as shown in Fig. 2. We
are guaranteed to have 100% throughput and the worst case
switching delay bounded by the sum of the time spent in the
three phases, given that packets that arrive in the first phase are
transmitted after the third phase. It is also critical that the third
phase never takes longer than the time of the accumulating
phase, because otherwise the switch is not stable.
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Fig. 2. Three phases of batch scheduling and pipelining.

There are interchangeably two representation of the TSA
problem. First, we may denote each configuration as a (partial)
permutation matrix P = [pi,j ]N×N which is a 0-1 matrix with
at most one “1” on each row or column. An “1” on ith row
jth column indicates that input i shall connect with output
j in the current switching. A scheduling algorithm produces
S configurations Pk (1 ≤ k ≤ S), each lasts for wk time
slots, that cover the traffic matrix. So W =

∑S
k=1 wk is the

scheduling makespan for batch D, and Sδ is the total overhead.
The scheduling cost C charged to the batch scheduler is the
sum of both. We can then express our problem as follows.

objective: min
∑S

k=1 wk + Sδ

subject to D ≤ ∑S
k=1 wkPk 1 ≤ k ≤ S

Note that it is generally difficult to determine the set of
configurations {Pk}. Because there are as much as

(
NS

S

)
such

candidates 1. Hence it is not a Linear Programming problem
because the constraints are not fixed. Once the set {Pk} is
determined, corresponding weights are merely the duration of
each configuration in order to cover the batch entries.

Alternatively (see Fig. 3), we can formulate the problem as
bipartite matching on graph G = (VI , VO, D). The vertices
in VI are the inputs, and the ones in VO are the outputs. The
edge connecting input vertex i and output vertex j is weighted
by the traffic demand di,j . The traffic matrix D is actually
an adjacent matrix representation of the edge weights. So the
equivalent representation of the scheduling problem is

Find S matchings {M1, . . . , MS} with
corresponding weights {w(M1), . . . , w(MS)} that

1
(

a
b

)
is the notation for a!

(a−b)!b!
, and NS for N!

(N−S)!
.
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cover the bipartite graph G = (VI , VO, D) such that∑S
k=1 w(Mk) + Sδ is minimized.

The problem can be clearly approximated by making use of
maximum matching algorithms. But each run of Maximum
Size Matching or Maximum Weight Matching will incur
O(N2.5) time [9] or O(N3) time [8] respectively. This will
force the overall TSA algorithm run for at least O(N3.5) time.
Instead, we may use the greedy approach that largely simplifies
the complexity yet provides satisfactory results.
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Fig. 3. Example of bipartite matching (left) and permutation matrix (right).

We consider in this paper on-preemptive scheduling, where
all di,j packets have to be transmitted during one connection of
input i and output j. Whereas in preemptive scheduling, every
transmission request di,j can be split and covered by several
configurations if necessary. However, it will generally intro-
duce more than N configurations, up to a number of (N2 −
2N + 2) [2]. Crescenzi et al. [10] considered the preemptive
batch scheduling problem and provided two 2-approximation
algorithms. Afrati et al. [11] derived an algorithm with an im-
proved approximation factor of 2− 1

δ+1 . However, the running
time of the known preemptive batch scheduling algorithms are
either peudo-polynomial or in Ω(N4) time.

III. 2-AUGMENTATION ALGORITHM

In this section, we propose a greedy algorithm for TSA
problem, which shall make good use of the information of the
input traffic in making scheduling decisions.

Intuitively, we first sort the entries in D into non-increasing
ordered list. To fill up a configuration, we repeat the fol-
lowing operation: We look ahead for two entries to fill in
the configuration greedily, meanwhile augmenting them for a
larger total weight. Then fill the larger one of the pair into
the configuration. In comparison, GREEDY does not have the
augmenting operation. It will just fill in the entries in sorted
order whenever they are fit into the configuration.

The deterministic algorithm will make scheduling decisions
based on the entry weights of the input batches. Because we
augment two entries at a time (corresponding to two nonad-
jacent edges in the bipartite graph setting), our algorithms is
called 2-AUGMENTATION (2AUG). It is presented below.

Algorithm 2AUG(D)
Input:

N × N non-negative integer matrix D.
Output:

A set of permutation matrices P1, . . . , PS and corresponding
non-negative integer weights w1, . . . , wS .

Procedure:

1) Sort the N2 entries of D in non-increasing order, and
put them in a list L.

2) While L is not empty.

a) Create a new (empty) configuration Pk.
b) While there are two entries di,j , dr,c ∈ L that can

be filled to Pk (i �= r, j �= c).
Check if ∃di,c, dr,j ∈ L such that

di,c + dr,j > di,j + dr,c.

Yes. Fill in di,c (w.l.o.g. assume di,c ≥ dr,j), and
remove it from L.
No. Fill in di,j (w.l.o.g. assume di,j ≥ dr,c), and
remove it from L.

c) Find the last entry from L that can be filled. Fill
it and remove it from L.

3) Set weight wk for each Pk.
4) Output.

Let us demonstrate the execution of 2AUG on a 4×4 traffic
matrix given below.

D =




3 2 0 7
4 1 9 3
5 4 6 8
5 6 7 2




We first come up with the non-decreasing ordered list L =
{d2,3, d3,4, . . . , d1,3}. We find d2,3 and d3,4 and then fill d2,3

in P1, because d2,3 + d3,4 > d2,4 + d3,3. Next, we find d3,4

and d4,2 and fill d3,4 in P1 for the same reason. The next one
filled is d4,2, because d4,2 +d1,1 > d1,2 +d4,1. Finally for P1,
we have no other choice but filling in d1,1.

Repeating this procedure for P2, we can fill in d1,4 and
d4,3 with no doubt. The next pair we find according to the
list L is (d3,1, d2,2). However, we can augment this because
d3,1 + d2,2 < d2,1 + d3,2. So we fill d2,1 into P2 instead of
d3,1. Following this procedure, P3 and P4 are obtained in the
same manner.

As a result, we obtain the following four configurations.

P1 =




3
9

8
6


 , P2 =




7
4

4
7




P3 =




2
3

6
5


 , P4 =




0
1

5
2




The scheduling makespan W2AUG(D) is the sum of the largest
entry in the configurations, equals 27. The maximum row/
column sum is T = 23. This means that 2AUG approximates
the optimal makespan within a factor of 2.
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IV. PERFORMANCE OF 2-AUGMENTATION

In this section, we analyze or experiment the performance
of 2AUG in three aspects, namely its time complexity, the
number of configurations it produces, and its scheduling
efficiency.

Let us first consider the running time of 2AUG. Sorting
the entries of D takes O(N2 log N). Within the recursion
step, finding two entries in L and augmenting them with their
neighbors takes O(N) time in the worst case. However, we
may speed it up in a twofold way. First, observe that when
we go through L for finding the two entries to fill, we may
encounter a few entries that are not suitable for the current
configuration. They certainly have to be put in some later
configurations. To save time, we may remember them and
prepare them in advance. We take the traffic matrix D in
Section III for example. Entry d4,3 = 7 will be encountered
in list L when packing P1. We know that it must appear in
the next configuration. We may put it into P2 in advance
so that we do not need to go back to it later when packing
P2. In such a processing manner, each entry in list L can be
encountered only once. That is, we actually perform a linear
scan through the list. Step 2b in the algorithm’s procedure will
be executed at most twice. Secondly, a careful implementation
of the matrix representation for each packet batch helps to ease
the neighbors’ searching. The total running time is dominated
by the sorting routine, which accounts for O(N2 log N).

Another performance measure is how many configurations
2AUG will construct. Therefore we prove the following
lemma.

Lemma 1: The number of configurations constructed by
2AUG is at most 2N − 1.

Proof: Because of the greedy nature of 2AUG, if di,j is
not in a configuration Pk, then Pk must have included either
di,c (for some c �= j) or dr,j (for some r �= i) which blocks
di,j in this configuration.

Now suppose there are more than 2N−1 configurations and
di,j is covered by P2N . However, there are at most 2N − 2
non-zero entries on row i and column j. That means di,j is
not blocked by any entry in P2N−1, which is a contradiction
to our assumption.

In order to show the scheduling efficiency, we compare the
makespan incurred by 2AUG and GREEDY. In [7], Kesselman
and Kogan proved that GREEDY is a 2-approximation algo-
rithm for arbitrary configuration delay. We shall see in our
simulation results that 2AUG perform as well as GREEDY,
sometimes a little bit better. Actually it is not a coincidence.
Because without augmentation, 2AUG is almost the same
as GREEDY. Notice that because we do not have any idea
of the reconfiguration delay δ, we abuse the notion of the
approximation ratio. Instead of the ratio of scheduling costs,
we measure the ratio of the algorithms’ scheduling makespan
WALG and the optimal makespan WOPT .

We have conducted simulations to compare the performance
of GREEDY and 2AUG for various switches and traffic
settings. The input traffic is defined as follows: Packets arrive
at inputs according to independent and identical distributed
(i.i.d.) Bernoulli processes. The traffic is admissible with

respect to the batch length T . To test for different value of
T , we made it also random and T � N . In our figures below,
we present the simulation results on a 32 × 32 switch.

We first looked into fifty arbitrarily selected samples.
The blue (upper) polyline in Fig. 4 depicts the makespan
ratio WGREEDY /T , and the red (lower) polyline depicts
W2AUG/T . Even though the difference is small, we observe
that 2AUG often incurs a smaller makespan than GREEDY.
However, generating smaller makespan does not necessarily

0 10 20 30 40 50
1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

A
pp

ro
xi

m
at

io
n 

R
at

io

Fig. 4. Fifty samples of the makespan ratios on a 32 × 32 switch;
blue (upper) for GREEDY and red (lower) for 2AUG.

imply producing more configurations. In fact in Table I, we
observe that 2AUG produces more or less the same number of
configurations as GREEDY does. Depending on the actually
traffic, they both produce 35 to 38 configurations for the
one thousand input batches. 2AUG has fewer occurrences to
produce 35 or 37 configurations than GREEDY. On average,
2AUG is 1.4% better.

TABLE I

THE NUMBER OF CONFIGURATIONS PRODUCED BY GREEDY AND 2AUG

(ON A 32 × 32 SWITCH OVER 103 UNIFORMLY RANDOM INPUTS)

# of Configurations 35 36 37 38 Average

GREEDY 268 623 105 3 35.5

2AUG 261 632 101 6 35

The overall distribution on the makespan ratios of these two
algorithms is presented in Fig. 5. The average makespan ratio
for GREEDY is 1.09945, and 1.093925 for 2AUG. We also
did simulations for a 64×64 switch setting with 103 uniformly
random input batches. On average, the makespan ratio of
GREEDY is 1.06297597 by utilizing 69.636 configurations;
and the makespan ratio of 2AUG is 1.06189832 by utilizing
69.632 configurations.

Despite the positive evidence displayed above, we have
to point out that 2AUG is not always better than GREEDY.
Indeed, the 4 example we provided in Section III was carefully
manipulated such that the makespan by GREEDY is one less.
Therefore, it is really a matter of traffic inputs that make
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Fig. 5. Statistical distribution of WALG/WOPT on a 32 × 32 switch.

the 2AUG and GREEDY slightly differ. We also conducted
simulations with some sparse traffic matrices and some dense
traffic matrices. The difference between their performances is
negligible.

V. GREEDY MAXIMAL WEIGHTED SCHEDULING

After we have seen a greedy algorithm that augments two
edges every time in matching, we may now think of an
extension of this idea. In general, we may look ahead and
then augment l edges (2 ≤ l ≤ N ) in each iteration. As to
the extreme, N -augmentation is exactly a Maximum Weighted
Matching algorithm, which augments N edges simultaneously
for a perfect matching. Although we may not provide a
rigorous proof, our intuition tells us that the more augmen-
tation work the algorithm does per iteration, the better the
performance is. We are expected to see that the scheduling cost
approaches the optimal one, and the number of configurations
approaches N .

The cost we pay for better performance is the increase of the
time complexity. In 2AUG, we only augment the total weight
among two sets of neighboring edges. Implicitly, we compute
and find the maximum of 2! choices in O(2! · 2) time. If the
number of the edges to augment per iteration is l, there will be
l! possible sets of edges. Finding the maximum weighted set
among the l! candidates takes O(l!·l) time in the worst case. It
is so time-consuming, even not mentioning the time spent for
searching the l edges that can be augmented. Therefore, it may
not be worthwhile to augment several edges at a time, unless
they are proved to be advantageous in terms of efficiency.

VI. CONCLUSION

Along with the fast development of Internet, optical switch-
ing technologies are becoming attractive for its huge capability
and scalability. The disadvantage of optical switching comes
from large reconfiguration overhead due to the technology
constraints. Besides, researchers have to compromise other
difficulties in designing scheduling algorithms such as sim-
plicity, time limitation and efficiency. It turns out that greedy
algorithms are suitable for such optimization problems.

The 2-AUGMENTATION algorithm proposed in this paper
tries to achieve a better performance by applying augmentation
with the greedy strategy. It slightly outperforms the simple
greedy algorithm in O(N2 log N) time according to our sim-
ulation. We also exploited the extension of this approach and
analyzed its major disadvantage of large time complexity. It
remains open whether augmenting more than two edges at
a time will yield a better result. It will be also interesting
to study how greedy strategy could be applied to preemptive
scheduling in optical switches.
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